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Abstract This paper presents a new hybrid global optimization method referred to as
DESA. The algorithm exploits random sampling and the metropolis criterion from simulated
annealing to perform global search. The population of points and efficient search strategy of
differential evolution are used to speed up the convergence. The algorithm is easy to imple-
ment and has only a few parameters. The theoretical global convergence is established for
the hybrid method. Numerical experiments on 23 mathematical test functions have shown
promising results. The method was also integrated into SPICE OPUS circuit simulator to
evaluate its practical applicability in the area of analog integrated circuit sizing. Comparison
was made with basic simulated annealing, differential evolution, and a multistart version of
the constrained simplex method. The latter was already a part of SPICE OPUS and produced
good results in past research.

Keywords Optimization · Simulated annealing · Differential evolution · Analog integrated
circuit sizing

1 Introduction

Global optimization has received a lot of attention in the recent years due to the fact that
many real-world problems can be treated as global optimization problems of the following
form:
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Á. Bűrmen
e-mail: arpadb@fides.uni-lj.si

J. Puhan
e-mail: janez.puhan@fe.uni-lj.si

T. Tuma
e-mail: tadej.tuma@fe.uni-lj.si

123



54 J Glob Optim (2009) 44:53–77

x∗ = arg min
x∈S

f (x)

f : S → R

S =
{

x, x ∈ R
N , l(i) ≤ x(i) ≤ u(i), i = 1, . . . , N

}
(1)

where f (x) is the so called cost function (CF), x is a N -dimensional vector of optimization
variables, and l(i) and u(i) are the lower and upper bounds for the i th variable, respectively.

Unfortunately problem (1) usually cannot be solved analytically. Many different classes
of optimization methods have been developed to solve the problem numerically. Gradient
methods are the fastest, but they require the information on the derivatives of the CF and
they work only on differentiable functions. This reduces their suitability for many practical
applications. The alternative to gradient methods are the direct search methods [1–3]. They
do not require gradients of the CF and can handle noisy and multimodal functions. Another
possible way is to classify optimization methods as local or global. The former are designed
to find the minimum very fast, even though it is not the true global minimum. The latter are
usually slower but can find the global minimum with high probability. There are also many
different hybrid methods that exploit the fast convergence of the local methods and good
global search capabilities of the global methods [4–7].

In this paper we present a new optimization method referred to as DESA. The method
exploits the key features of the simulated annealing algorithm (SA) [8], namely the random
sampling and the so called metropolis criterion. In order to improve the convergence rate,
elements from differential evolution (DE) [9] are incorporated. DESA works with a popu-
lation of points and also exploits the efficient search mechanism of DE. Since the method
uses random sampling and the metropolis criterion when accepting trial points, we can expect
slower convergence rates when compared with basic DE, that uses a greedy selection strategy.
But on the other hand it allows us to theoretically analyze the global convergence properties
of DESA and also allows the method to work with a small population. DE relies on a very
large population to perform global search and lacks the global convergence property since it
has no means of escaping from suboptimal solutions after all population members have con-
verged to it. In comparison with basic SA we expect considerable improvement in terms of
the convergence speed and the final solution quality since inefficient pure random sampling
of SA is combined with the DE operator.

We tested the performance of DESA on a set of 23 mathematical test functions and also in
the area of device sizing in analog integrated circuit (IC) design. Most modern ICs consist of
both digital signal processing components and analog interfaces to the outside world. Many
efficient cell-based tools exist to design the digital portion of the system, but the design of
analog components is more difficult. The process usually consists of an optimization tool
that selects trial circuits and a circuit simulator that evaluates its performance. The main issue
in this process is the fact that the evaluation of a single circuit usually takes a considerable
amount of time. In the past several ways to tackle this problem have been developed. In [10]
an extensive survey of analog synthesis strategies is presented. In [11] for example equa-
tion based subcircuits were composed to simplify and speed up the evaluation of the circuit
performance. In [12] the circuit equations were also modified during the synthesis process.
While equation based synthesis provides the means for a very fast circuit evaluation, it is
very difficult to obtain the equations. The accuracy of such evaluators is also limited and
the equations must be constructed for every manufacturing technology separately. In [13]
the authors use the polynomial interpolation method to allow efficient and fast repetitive
evaluations of the circuits. They theoretically analyze the method and propose modifications
to improve its accuracy and efficiency.
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In order to automatically obtain the reduced order symbolic model for the linear transfer
functions of the circuit, symbolic analysis was used in [14–18], but such models cannot be
applied to highly nonlinear characteristics of the circuit. In [10,19] the authors used two dif-
ferent modules to design analog circuits. The first one compiles the SPICE netlist describing
the circuit and design specifications into a C-style cost function and the second module then
uses simulated annealing to find its minimum. In [20] the authors use a combination of a
special DC simulator and a set of equations either provided by the user or obtained through
SPICE simulations and neural network training. They use a hybrid between evolution strat-
egies and simulated annealing to solve their optimization problem.

In [21] a more extensive survey of the automated device sizing methods is presented, while
in [22,23] the authors present an overview of recent design methodologies for the design of
large systems on chip (SoC). The methods involve the extraction of nonlinear macromodels
of the circuits which are then used to evaluate circuit performance.

In this paper we use an approach similar to [24]. The authors in [24] developed a new
optimization procedure as a combination of a population based approach and pattern search.
But unlike the approaches described above they use full device models circuit evaluation.
This has two main consequences. First the use of full device models ensures the maximal
accuracy for the evaluation of circuit’s performance. On the other hand this approach takes
much more time than the simulation of simplified reduced order models, which means it can
only be used for medium sized circuits.

In our experiments we used the SPICE OPUS circuit simulator [25] to evaluate the cir-
cuit’s performance. Unlike most programs based on the original SPICE code from Berkley,
SPICE OPUS includes an internal optimizer. This reduces the overhead present when the
simulator is completely separated from the optimization engine and needs to be invoked for
every CF evaluation separately.

Device sizing in analog ICs is inherently a multiobjective optimization problem, since
the designer is usually interested in several circuit properties (e.g. gain, bandwidth, power
consumption, area, etc.). One way to deal with multiple objectives is to combine all objectives
into a scalar real-valued function. This approach is implemented in SPICE OPUS. First a
separate penalty function is constructed for every design goal, and the final CF is obtained as
a weighted sum of these penalty functions. Varying environmental conditions (e.g. tempera-
ture, model parameters, etc.) are considered by simulating the circuit across several corners,
where every corner represents a different set of values for environmental parameters. The
evaluation of circuit properties is conducted for every corner and the worst values are used
in the construction of the corresponding penalty function and the calculation of the final CF
value [26].

We should mention that in our experiments we ignored some very important aspects of
analog IC design, such as worst case and mismatch issues, yield estimation, and layout
issues, etc [27,28]. These can be included in the existing framework as separate analyses and
measurements but are not the subject of this paper. Our main goal is to find methods that
are capable of finding the global minimum of complex cost functions, and hopefully have a
theoretical background to backup its practical performance.

This paper is organized as follows. In Sects. 2 and 3 the basic SA and DE algorithms
are described. Section 4 gives a detailed description of the DESA algorithm. In Sect. 5 the
theoretical global convergence of the algorithm is established. Section 6 contains the experi-
mental setup and the optimization results for the mathematical test functions and real-world
IC design problems. Section 7 contains the concluding remarks.

Notation M, N, U [0, 1], x(i), and µ(A) denote the population size (the number of
samplers), the dimensionality of the problem, an uniformly distributed random variable
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from the [0,1] interval, the i th component of vector x , and the Lebesgue measure of set
A, respectively. Superscripts denote different points in the search space and indices denote
different iterations.

2 Simulated annealing

Simulated annealing (SA) is a stochastic global optimization algorithm that performs random
sampling of the search space [8]. Its key feature is the mechanism controlling the transition
from the current point (x) to a new point (xn), generated by a random perturbation (δx) of
point x . The transition mechanism is known as the Metropolis criterion and is defined as

P = min(1, e− f (xn )− f (x)
T ) (2)

where P is the probability of making the transition from x to xn (i.e. xn replaces x). f (xn)

and f (x) are the CF values at xn and x , respectively. Parameter T is referred to as the tem-
perature. This mechanism always accepts downhill moves (i.e. if f (xn) < f (x)), but it also
allows uphill transitions with positive probability. This probability is controlled by the current
value of the temperature parameter (T ). Initially T is set to a very high value which means
that most transitions (including the uphill) are accepted. During the annealing process T is
reduced according to the specified cooling schedule. Therefore the probability of making an
uphill transition becomes smaller. At the end of the optimization T has a very low value and
the algorithm behaves almost like a descent method. The annealing mechanism allows the
algorithm to escape from local minima when T is high and fine-tune the solution when T is
low.

One of the attractive features of the SA algorithm is the fact that its theoretical conver-
gence to a global minimum can be guaranteed under certain assumptions. This requires a
very careful selection of the cooling schedule and the mechanism for generating δx . In [29]
for instance there are several convergence results for various SA algorithms. SA algorithms
that can guarantee convergence often do not perform well in practice because they require
a very slow cooling schedule and thus have very slow convergence. Pure random sampling
is also a drawback of SA since it does not use any knowledge gathered during the search.
In order to speed up the process, modifications to the sampling mechanism and the cooling
schedule are often used. This means that the convergence results no longer apply but the
algorithm may still perform reasonably well. Selection of SA parameters is however a very
delicate process. It depends on the optimization problem at hand and can greatly influence
the success rates of SA.

3 Differential evolution

Differential evolution (DE) is a parallel direct search method that uses a population of M
points to search for a global minimum of a function over a continuous search space [9]. In
every generation the entire population is used to generate new trial points. For every point
(target point xit ) in the current population a so called mutated point (xm) is generated by
adding a weighted difference of two randomly selected points (xic1 and xic2) from the current
population to the third point (xic3). We denote the weight factor by w and is given by the user.
Usually the value of w is in the (0,1] interval. Then crossover between the current target point
and the mutated point is applied to generate a trial point (xg). Several crossover schemes
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have been reported in the literature. Binomial crossover where the crossover is applied inde-
pendently to every variable with probability Pc, is often used. If the CF value at xg is lower
than at xit , xg replaces xit in the next generation. The process is repeated until the maximal
number of generations is reached.

4 DESA algorithm

With DESA we hope to improve the search efficiency and convergence speed of SA by
incorporating some features of DE. The method uses a population of M samplers to guide
the search process. Along with the random sampling the DE operator is used to consider the
knowledge already accumulated by the population. Instead of the greedy selection strategy
of DE the original metropolis criterion is used to allow the acceptance of non-improving
solutions into the population. However since the annealing schedule is one of the most prob-
lematic aspects of SA, we use a somewhat different approach. Instead of having a single
sampler and decreasing the temperature with time we have multiple samplers operating at
different but constant temperatures. Temperature changes are achieved by exchanging the
points between different samplers. There have already been several attempts to use such an
approach to avoid the difficulties of selecting the appropriate cooling schedule [30,31]. Like
the temperature, we assign to every sampler different but fixed crossover probability and an
additional parameter called the sampling radius, which controls the length of random steps.
So the i th sampler gi (where i = 1, 2, . . . , M) can be fully defined by the following features:

1. Temperature T i , which is used in the Metropolis criterion
2. Radius Ri , which is used for random step generation
3. Crossover probability Pi

c , which is used in DE operator
4. A point xi in the search space S

Since different optimization parameters in practical applications can have values that
can differ by several orders of magnitude, we normalize all optimization variables to the
[0,1] interval. The pseudo code of the DESA algorithm is given by Algorithm 1. A detailed
description of the method is given in the following subsections.

Algorithm 1 DESA algorithm

Require: M, T M , RM , P1
c , P M

c , Dstop
1. Initialize population {generate M points}
2. Initialize method {set T i , Ri , Pi

c , i = 1, 2, . . . , M}
3. k = 0 {iteration counter}
4. repeat
5. k = k + 1
6. trial point generation
7. replacement {Metropolis criterion}
8. acceleration
9. transition between samplers
10. until termination conditions are met

4.1 User defined input parameters

The method uses some parameters that must be set by the user. They are the number of
samplers M ≥ 4 (population size), minimal temperature T M > 0 (temperature for the last
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sampler), minimal random sampling radius RM > 0 (radius parameter for the last sampler),
crossover probabilities for the first and the last sampler P1

c , P M
c ∈ [0, 1], and the stopping

distance Dstop > 0. Default values for these parameters are M = 20, T M = 10−6, RM =
10−6, P1

c = 0.1, P M
c = 0.5 and Dstop = 10−4.

4.2 Initialization of population

The initial population can be generated randomly but in our method we use the Latin hyper-
cube approach that allows more thorough exploration of the search space. Every optimization
variable interval is first divided into M equal subintervals. Then M points are randomly gen-
erated so that every subinterval for every optimization variable is included in the initial
population. This is very important in algorithms that use crossover operators. The values of
parameters inside subintervals are chosen randomly.

4.3 Initialization of method parameters

At the beginning of the optimization run some additional method parameters must be set.
These parameters are the temperature, the sampling radius parameter and the crossover prob-
ability for every sampler. All of them are initialized in the same way. We use the values of
the parameters for the first and the last sampler and an exponential function to calculate the
values for the remaining samplers.

ct = 1

M − 1
· log

(
T 1

T M

)

T i = T 1 · e−ct ·(i−1), i = 1, 2, . . . , M (3)

T 1 is the maximum temperature and is set to the CF difference between the worst and the
best point in the initial population. The same procedure is then repeated for the sampling
radius parameter Ri with R1 = 1, and for the crossover probabilities Pi

c .

cr = 1

M − 1
· log

(
R1

RM

)

Ri = R1 · e−cr ·(i−1), i = 1, 2, . . . , M (4)

cp = 1

M − 1
· log

(
P M

c

P1
c

)

Pi
c = P1

c · ecp ·(i−1), i = 1, 2, . . . , M (5)

4.4 Trial point generation

In every iteration a single point is selected for improvement. We select the worst point in the
current population but any point that is not the best point can be selected here. We denote
the sampler that holds this target point with the superscript i t . A new trial point is generated
using a combination of an operator similar to the original DE operator and a random move.
The procedure is given by Algorithm 2.

xm is the mutated point, xg is the generated trial point, and r is a random step generated
according to the Cauchy probability distribution. Since the sampling radius parameter Ri

has different values for different samplers, the mechanism acts almost as the original DE
operator when Rit is small and becomes very much like random search operator when Rit is
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Algorithm 2 Trial point generation

1. select target point (denoted by xit )
2. select randomly ic1, ic2, ic3 ∈ {1, 2, . . . , M} where ic1 �= ic2 �= ic3 �= i t
3. w = U [0, 1] · 2
4. xm = xic1 + (xic2 − xic3) · w
5. for i = 1, 2, . . . , N do
6. r = Rit · tan(π · (U [0, 1] − 0.5))

7. if U [0, 1] < Pit
c then

8. xg(i) = xm (i) + r
9. else
10. xg(i) = xit (i) + r
11. end if
12. if xg(i) > 1 (upper bound constraint violated) then
13. xg(i) = xit (i) + (1 − xit (i)) · U [0, 1]
14. else if xg(i) < 0 (lower bound constraint violated) then
15. xg(i) = xit (i) + (0 − xit (i)) · U [0, 1]
16. end if
17. end for

large. Different samplers can be initialized with different crossover probabilities (Pi
c ) by the

user (via the input parameters P1
c and P M

c ) to fine tune the trial point generation mechanism.
Large values of Pit

c mean that along with the random step r a DE operator is used for many
variables which speeds up the convergence while low values of Pit

c emphasize random search
with only an occasional use of DE operator.

4.5 Replacement

In this phase of the algorithm the generated trial point xg is submitted to the Metropolis
criterion (2) with temperature T it . If the criterion is satisfied, xg replaces xit in the next iter-
ation. Better points are always accepted. If the trial point xg is worse than the current target
point, the transition depends on the sampler that holds the target point. If the target point
xit is located at the sampler with high temperature, xg will have a high probability of being
accepted. If the target point is located at a sampler with low temperature, this probability will
be low. With this mechanism the chances for the algorithm to escape from a local minimum
are increased.

4.6 Acceleration

The method can use many different mechanisms to speed up the convergence. In our case we
used a very simple procedure. Every time a new best point is found, we apply this mechanism.
We construct a quadratic model function based on three collinear points in the search space.
The first point is a randomly selected point from the current population. Points with higher
CF values have higher probability of being selected. The probability of selecting the point il
is given by (6).

P(il) =
f (xil )− f (xbest )

f (xworst )− f (xbest )∑M
j=1

f (x j )− f (xbest )

f (xworst )− f (xbest )

(6)

xbest and xworst denote the points from the current population with the lowest and highest
CF values, respectively.
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The second point is the centroid of the population points (c) and is calculated according
to (7).

c = 1

M

M∑
i=1

xi (7)

These two points define a search direction d = c − xil . The third point p3 is obtained by
making a random move from xil in the direction d . If the obtained quadratic model function is
not convex, the best of these three points is returned. For the convex case the minimum of the
model function is returned. If the minimum of the model function violates box constraints,
it is first contracted towards xil until the violation is removed. The returned point replaces
xil if it has lower CF value. The procedure is given by Algorithm 3.

Algorithm 3 Acceleration mechanism

1. select a point from the population {denoted by xil }
2. calculate the centroid c = 1

M
∑M

i=1 xi

3. set p1 = xil , p2 = c
4. set w = 1 + U [0, 1]
5. set p3 = p1 + (p2 − p1) · w

6. if p3 violates box constraints then
7. repeat
8. p3 = 1/2 · (p3 + p1)

9. until p3 satisfies box constraints
10. end if
11. construct quadratic model function through p1, p2, p3

12. if model function convex then
13. find minimum of the model function pm

14. if pm violates box constraints then
15. repeat
16. pm = 1/2 · (pm + p1)

17. until pm satisfies box constraints
18. end if
19. else
20. set pm as the best among p1, p2, p3

21. end if
22. if f (pm ) < f (xil ) then
23. replace xil with pm

24. end if

4.7 Transition between samplers

One of the main problems of the original SA algorithm is the selection of the appropriate
cooling schedule. This means the selection of the initial temperature, the number of steps at
every temperature stage and the temperature reduction mechanism. If the cooling is too fast
the algorithm can get trapped in a local minimum and if the cooling is too slow the optimiza-
tion takes too long to be of any use for practical purposes. In DESA the cooling schedule is
not needed because temperature changes are achieved by simply exchanging points between
samplers which operate at different but fixed temperatures. After every trial point generation,
replacement, and acceleration phase we randomly select a sampler gis from the popula-
tion. Then samplers git and gis exchange their points in search space with probability given
by (8).
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P = min

(
1, e

−( 1
T is − 1

T it )·( f (xis )− f (xit ))

)
(8)

This mechanism is quite different from the original idea of SA. Here the idea is to always
send bad solutions to samplers with low T and R where the trial point will be generated with
the DE operator, random step will be small and most uphill transitions will be rejected. But
occasionally we also allow the transition of bad points to samplers with high T and R where
random steps are large and uphill transitions are accepted with higher probability. So if the
algorithm cannot find good solutions, the target point will eventually end up at samplers with
low T and R, where trial points are generated in a way similar to DE. When good solution is
found, the next target point is likely to be at a sampler with higher T and R so the algorithm
will run at least for a while like a random search allowing longer jumps through the search
space and making uphill transitions with higher probability. If an acceptable solution is not
found the target point will eventually end up at samplers with small T and R and the whole
process is repeated. This scheme also performs a kind of reannealing and further improves
the chances of escaping from a local minimum.

4.8 Termination criteria

Several termination criteria can be used in our method. In practice the time available for the
optimization is always limited so the maximal number of function evaluations is a logical
choice for termination. The maximal distance between points in the population and the cur-
rent best point is also used in the termination condition. When this distance falls below a
user-defined stopping distance Dstop the algorithm is terminated. The third termination crite-
rion is the CF value difference between the best and the worst point in the current population.
When this difference becomes smaller than the user-defined minimal temperature (T M ) the
algorithm is terminated. In analog IC design with SPICE OPUS all the design goals are
satisfied when the CF value reaches zero (see [26]). This can also be used in the termination
condition.

5 Convergence

In this section we establish the convergence in probability for the proposed DESA method.
We prove that if the number of iterations is large enough, DESA converges to the set of
ε-optimal solutions. The proof is based on the fact that a global optimization algorithm must
have a positive probability of reaching an arbitrary subset of points in the search space in
a finite number of iterations. The acceleration mechanism described in the previous section
affects a single point in the population and does not affect the convergence of the algorithm,
therefore it is excluded from the theoretical analysis.

5.1 Notation

We define the set of global optimal solutions S∗ and the set of ε-optimal solutions S∗
ε as:

S∗ = {x∗, x∗ ∈ S, f (x∗) = f ∗}
S∗
ε = {x, x ∈ S, f (x) ≤ f ∗ + ε} (9)

where f ∗ is the global minimum of the CF in S.
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The algorithm runs as a stochastic process which depends on a population of points in the
search space. We define the state space of this process as

X =
{

x, x = (x1, . . . , x M ), xi ∈ S, i = 1, 2, . . . , M
}

(10)

where x denotes a state of the process (a population of points). We also define a random
variable Xk which corresponds to the population of points at the kth iteration. Since the
population at every iteration depends only on the population at the previous iteration, the
stochastic process can be modeled by a time homogeneous Markov chain, for which we
define a transition probability p(x, A) (the probability of making a transition from state x to
a state with at least one point in set A):

p(x, A) = P(νA(Xk+1) �= 0|Xk = x) (11)

where νA(x) denotes the number of points from state x that reside in set A.
We also define

pmin(A) = inf
x∈X

(p(x, A)) (12)

and a set of states (populations) which are not ε-optimal:

Cε = {
x ∈ X, νS∗

ε
(x) = 0

}
(13)

We must also define the concept of convergence. The method is said to converge to the
set of ε-optimal solutions if the following condition holds:

∃ε > 0, K (ε) ≥ 0 such that νS∗
ε
(Xk) �= 0 ∀k > K (ε) (14)

5.2 Assumptions

For DESA we make the following assumptions:

(1) The search space is bounded, i.e.

− ∞ < l(i) ≤ x(i) ≤ u(i) < ∞, i = 1, 2, . . . , N (15)

which means that after normalization of variables all points in the population will belong
to the set S = [0, 1]N .

(2) The CF is bounded, i.e.

− ∞ < f (x) < ∞, ∀x ∈ S (16)

which ensures that the maximum temperature Tmax (calculated in the method initializa-
tion step) is always bounded.

(3) S∗
ε must have a positive Lebesgue measure i.e.

µ(S∗
ε ) > 0, ∀ε > 0 (17)

5.3 Convergence proof

For the convergence analysis we need two lemmas.

Lemma 1 The following condition holds:

if k ≥ 0 and νS∗
ε
(Xk) �= 0 then P(νS∗

ε
(Xk+1) �= 0|Xk) = 1 (18)
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This means that when the process reaches an ε-optimal state, the subsequent states will also
be ε-optimal.

Proof The method ensures that the best point in the current population is never selected
as a target point for replacement. Hence if the population at iteration k is ε-optimal (i.e.
νS∗

ε
(Xk) �= 0), then the current best point resides in S∗

ε . This point can only be selected for
replacement if another sampler has found a new point that has even lower CF value. Therefore
this new point also resides in S∗

ε . So

νS∗
ε
(Xk+1) �= 0 (19)

which completes the proof. 
�
With (12) we define the minimal probability of making a transition form an arbitrary state

x ∈ X to a state with at least one point residing in set A.

Lemma 2 Suppose that for any A ⊂ S with positive Lebesgue measure (i.e. µ(A) > 0) the
assumptions from the subsection 5.2 hold. Then the following condition also holds:

pmin(A) = β∗ > 0 (20)

Proof First we divide the transition into two steps. First is the generation of the trial point
xg inside the set A, given the current target point xit . We denote this probability with

PG(x) = P(xg ∈ A|xit = x) (21)

The second step is the replacement of the current target point xit with xg . In this step we
use the Metropolis acceptance criterion and we denote this probability with

PM (xit , xg) = e
− f (xg )− f (xi t )

T it (22)

We now compute the lower bound for PG(x). Since the variables are perturbed inde-
pendently, it is sufficient to consider only the one dimensional case. We denote the current
point, the mutated point and the generated trial point (now in one dimension) with xt , xm and
y, respectively. Due to assumption 1, normalization of variables, and using the mechanism
described by Algorithm 2 the following conditions hold

0 ≤ xt ≤ 1

−w ≤ xm ≤ (1 + w) (23)

In one dimension the set A becomes a subinterval of [0,1] i.e.

A = {x, x ∈ R, 0 ≤ aL ≤ x ≤ aH ≤ 1} (24)

A trial point y is generated by adding a random step r to either xt or xm , depending on the
crossover probability Pc. The random step is generated according to the Cauchy probability
distribution which is defined by

p(r) = R

π(R2 + r2)
(25)

where R is the random sampling radius parameter for the sampler that holds the current target
point xt .

We now compute two probabilities. The first one (Pm) is the probability of generating a
random step r that will move the mutated point xm into A and the second one (Pt ) is the
probability of generating a random step r that will move the target point xt into A.
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Pm can be expressed as:

Pm = Pm(y ∈ A) ≥
aH∫

aL

R

π(R2 + (y − xm)2)
dy (26)

The inequality comes from the fact that some points can end up violating box constraints
after the random step. The mechanism described by lines 12–16 of the Algorithm 2 removes
the violations and increases the probability of making a transition into set A.

Since the generated trial point y always obeys box constraints (i.e. 0 ≤ y ≤ 1) and due to
(23), the following always holds

(y − xm)2 ≤ (1 + w)2 (27)

Thus (26) becomes

Pm ≥ R

π(R2 + (1 + w)2)

aH∫

aL

dy = R

π(R2 + (1 + w)2)
· (aH − aL) (28)

The positive Lebesgue measure of A in one dimension means that

aH − aL > 0 (29)

and since the sampling radius parameters and weight factor in the trial point generation
mechanism are bounded and non zero we can write

βm = min(Pm) > 0 (30)

Similarly we can calculate the second probability (Pt ) which is the probability of gener-
ating a random step r that will move the current target point xt into set A.

Pt = Pt (y ∈ A) ≥
aH∫

aL

R

π(R2 + (y − xt )2)
dy (31)

The inequality here comes from the same fact as before. Box constraints violations are han-
dled by lines 12–16 of the Algorithm 2, which increases the probability of making a transition
into set A.

Following the same procedure as before we get

(y − xt )2 ≤ 1 (32)

Pt ≥ R

π(R2 + 1)

aH∫

aL

dy = R

π(R2 + 1)
· (aH − aL) (33)

Using the same reasoning as before we can write

βt = min(Pt ) > 0 (34)

We now use (30) and (34) to compute

P(y ∈ A) = Pc · Pm + (1 − Pc) · Pt

≥ Pc · βm + (1 − Pc) · βt = β > 0 (35)

where Pc is the crossover probability.
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Since all variables are perturbed independently we can now compute the lower bound for
PG(x)

βG = min
x∈S

(PG(x)) = βN > 0 (36)

Next we need to compute the lower bound for replacement probability PM (xit , xg). Due
to assumption 2 and non zero user defined minimum temperature Tmin we can write

FM = max
x,y∈S

| f (x) − f (y)| < ∞
0 ≤ | f (xg) − f (xit )| ≤ FM

Tmin > 0

βM = min
x,y∈S

(PM (x, y)) = e
− FM

Tmin > 0 (37)

Now we can express

pmin(A) = min(PG(x)) · min(PM (xit , xg)) = βG · βM = β∗ > 0 (38)

which completes the proof of the lemma. 
�

Theorem 1 If the assumptions from the subsection 5.2 hold, the algorithm converges to S∗
ε

with probability one, i.e.

lim
k→∞(P(νS∗

ε
(Xk) �= 0) = 1 (39)

Proof Since the process is a time homogeneous Markov chain and due to Lemma 1 we can
write

P(νS∗
ε
(Xk) = 0) = P(νS∗

ε
(X1) = 0, νS∗

ε
(X2) = 0, . . . νS∗

ε
(Xk) = 0)

= P(νS∗
ε
(X1) = 0)

k∏
j=2

P(νS∗
ε
(X j ) = 0|νS∗

ε
(X j−1) = 0) (40)

We assume that the initial population is not optimal, i.e.

P(νS∗
ε
(X1) = 0) = 1 (41)

We now use (13) to compute

P(νS∗
ε
(X j ) = 0|νS∗

ε
(X j−1) = 0) = P(νS∗

ε
(X j ) = 0, νS∗

ε
(X j−1) = 0)

P(νS∗
ε
(X j−1) = 0)

=
∫

Cε
P(νS∗

ε
(X j ) = 0|X j−1 = x)P(X j−1 = x)µ(dx)∫

Cε
P(X j−1 = x)µ(dx)

(42)

Basically (42) states the probability of making a transition from non-optimal state (pop-
ulation) to non-optimal state. Now using (12) and Lemma 2 let

p∗ = pmin(S∗
ε ) ≥ β∗ > 0 (43)

and thus

P(νS∗
ε
(X j ) = 0|X j−1 = x) ≤ (1 − p∗), ∀x ∈ Cε (44)
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We insert (44) into (42) and the result is

P(νS∗
ε
(X j ) = 0|νS∗

ε
(X j−1) = 0) ≤ (1 − p∗)

∫
Cε

P(X j−1 = x)µ(dx)∫
Cε

P(X j−1 = x)µ(dx)
= (1 − p∗) (45)

Inserting (45) and (41) into (40) yields

P(νS∗
ε
(Xk) = 0) ≤ (1 − p∗)k−1 (46)

Now we can compute

lim
k→∞(P(νS∗

ε
(Xk) = 0) ≤ lim

k→∞(1 − p∗)k−1 = 0 (47)

Finally it follows

lim
k→∞(P(νS∗

ε
(Xk) �= 0) = 1 − lim

k→∞(P(νS∗
ε
(Xk) = 0) = 1 (48)

which completes the proof of the theorem. 
�

6 Testing the algorithm’s performance

DESA was tested on 23 mathematical test functions and on seven real-world cases of analog
IC design. Comparison was made with basic SA and DE, and also with the method that
produced good results for IC design problems in SPICE OPUS. The latter is a multistart
version of the simplex method referred to as the constrained simplex method (COMPLEX).
The original COMPLEX method [1] has some global search capabilities but it is still local
in nature and the final result depends greatly on the choice of the initial point. Therefore the
multistart concept was implemented in SPICE OPUS to improve the method’s global search
capabilities [32]. The concept proved to be fairly successful in IC design [26,32,33] but it is
sometimes slow and unreliable. So our goal is to find methods that are capable of producing
better and more consistent results.

DESA, DE and SA were implemented in C language and integrated into SPICE OPUS.
All methods were tested using the same algorithm parameter values for all test cases. The
population size for DE was set to 100, crossover probability was 0.9, and weight factor 0.5.
SA parameters were set in the following way. First 50 random points were evaluated and
the initial temperature was set to accept the largest uphill jump with probability 0.9. The
best of these 50 points was selected as the starting point for the algorithm. Temperature
and random sampling radius were annealed with factor 0.99, and the number of steps in
every temperature stage was set to twice the number of optimization variables. The trial
points were generated according to the Cauchy probability distribution which allows longer
jumps through the search space than the original Gaussian distribution. These settings do not
exactly meet the requirements for guaranteed global convergence but were selected to get
at least some results with the given number of CF evaluations. SA was terminated when the
temperature reached 10−6.

6.1 Optimization of mathematical functions

A total of 23 mathematical test functions were used with dimensionality ranging from 2 to 30.
The definitions of the test functions can be found in [34]. For every function 30 independent
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optimization runs were conducted with different seeds for the random number generator. The
results are given in Table 1.

The table contains the average of the final CF values over 30 runs (mean CF) and the
average number of CF evaluations (CFE) after which the methods were terminated (mean
CFE). For the multistart COMPLEX method the (rounded) average of finished restarts is also
given along with the number of CFE. The CFE limit was set to 100,000 for f1 − f13, 20,000
for f14, f16 − f19, 30,000 for f15, f21 − f23 and 40,000 for f20. The multistart COMPLEX
method was allowed to finish the last restart even if the CFE limit was reached.

We can see that SA achieved the worst performance on all functions so we will not include
SA in our discussion. f1 − f5 are unimodal. For these functions DE and the multistart COM-
PLEX are expected to outperform DESA, however except for f3, where DESA was the worst,
DESA produced results that were better or comparable with the multistart COMPLEX, but
was outperformed by DE. For discontinuous f6 DE was the most successful. DESA was
prematurely terminated in one run but multistart COMPLEX failed in all 30 runs. On the
noisy f7 the methods achieved similar performance.

f8 − f13 are high dimensional functions with a large number of local minima. These
functions represent the most difficult class of optimization problems and are the main focus
of our work. It appears that for such functions DE is not the best choice. DESA produced
better results than the multistart COMPLEX for all functions except f9, and was better than
DE on three problems. For the remaining three problems it ended up in the vicinity of the
global minimum, while DE produced the best results for these functions. DE was the worst
method on f9 and failed badly on f8 and f11.

The remaining functions are low dimensional functions with only a few local minima.
DESA worked well for most of these functions. For f15 the minimal random steps prohibited
DESA to fine-tune the solution and on f21, and f22 it was terminated before it could reach the
global minimum in three runs and one run, respectively. DE missed the global minimum twice
for f20. The multistart COMPLEX found the solutions in the vicinity of the true global minima
for these functions but was unable to fine-tune them better than DE for f15, f18, and f21− f23.

We can say that SA is the least successful method while DE produced the best average re-
sults for this set of functions. The results also show that while DE has very good fine-tunning
abilities, it is not the best choice for high dimensional functions with many local minima. For
these functions DESA appears to be better suited since it was able to find a better solution
on three functions and ended up in the close proximity of the minimum for the other three.
Multistart COMLPEX method was the best only for f9.

We should mention that a very strict limit in terms of maximal number of CF evaluations
was imposed in our experiments on mathematical functions. We wanted to test how well dif-
ferent methods perform with the given budget of CF evaluations. When imposing different
termination criteria (e.g. CFE limit, distance between solutions, etc), there is always the risk
of missing the true global minimum of the CF. Many methods have been developed that can
guarantee theoretical global convergence (e.g. [29,35,36]) but they usually assume that they
are allowed to run forever, which is not possible in practice. For DESA we also established
the global convergence but due to fairly strict termination conditions, the method missed the
global minimum or was unable to fine-tune the solution in some optimization runs.

6.2 Optimization of integrated circuits

The performance of the described methods was tested on seven real-world cases of analog IC
design. We will describe in detail only the first case (damp1) which is a differential amplifier
circuit. The circuit topology is depicted in Fig. 1.
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Fig. 1 Topology of the damp1 case

There are 27 optimization variables:

• 3 resistors → 3 optimization variables
• 2 capacitors → 2 optimization variables
• Transistors NM0 and NM1 should be identical → 2 optimization variables (width and

length)
• Transistors NM3, NM5, NM7, and NM8 should be identical → 2 optimization variables

(width and length)
• Transistors PM0 and PM1 should be identical → 2 optimization variables (width and

length)
• Transistors PM2, PM3, PM5, and PM10 should be identical → 2 optimization variables

(width and length)
• Transistors PM9 and PM11 should be identical → 2 optimization variables (width and

length)
• Transistors NM2, NM4, NM6, PM4, PM6, and PM7 → 6 ·2 = 12 optimization variables

(widths and lengths)

In this case we do not optimize transistor multipliers.
The properties which we are interested in are: circuit area, current consumption, AC gain,

unity gain bandwidth, bandwidth, phase margin, gain margin, maximal derivative of gain
magnitude, output voltage swing, DC gain, settling time, overshoot, slew rate, rise time, and
fall time.

In order to measure these properties we need to perform the following analyses: an oper-
ating point analysis, a DC analysis, an AC analysis, and a transient analysis.

We only consider a single corner point with typical model parameters and ambient tem-
perature of 27◦C.

The remaining cases will be described more briefly. The second case (damp1-5c) optimizes
the same circuit as the first case, with the same optimization parameters and design goals,
but considers five different corner points to account for varying environmental conditions.

The third case (lfbuffer) is a circuit with 36 optimization parameters (32 transistors, 1
capacitor and 1 resistor). It requires an OP, an AC, a DC, and a transient analysis to measure
13 circuit properties chosen as design goals. The case considers a single corner point.
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The fourth case (lfbuffer-5c) is the same as the third one but considers five different corner
points.

The next case (nand) is a simple NAND gate element with only three optimization param-
eters (four transistors) and considers three corners. The case requires an OP analysis and two
transient analyses to measure nine circuit properties.

The delay case (delay) has 12 optimization parameters (six transistors) and a single cor-
ner point. It requires an OP analysis and a transient analysis to obtain six considered circuit
properties.

The last case (damp2) is another amplifier circuit with 15 optimization parameters (nine
transistors, one capacitor and one resistor) and 14 corner points. We perform an OP, a DC,
two AC, a transient, and a noise analysis to measure 13 circuit properties.

All considered test cases were optimized using the same algorithm parameter values as for
the optimization of mathematical functions. Since the optimization is very time consuming,
every circuit was optimized only once.

Optimization results are given in Table 2. For every case the number of design variables
(VARS), the number of design goals (GOALS), and the number of corner points (CORNERS)
is given. The table shows the number of CFE needed to reach a solution with the given CF
value, the CF value of the final solution, the number of CFE needed to find the final solution,
and the number of CFE when the methods were terminated. For the multistart COMPLEX
method the number of restarts needed to perform the given number of CFE is also given
(restarts). Circuits for which the final CF value is zero have satisfied all the design goals and
the optimization was stopped at that time even though the termination criteria or the CFE
limit were not reached yet. Table 3 shows the detailed results for the damp1 case.

We can see from Table 2 that SA exhibits the worst performance as was the case with
mathematical functions. Since we did not experiment to determine the appropriate values
for SA parameters, the performance is quite bad as expected. Multistart COMPLEX method
performed reasonably well but despite several restarts it was unable to find better solu-
tions than DE or DESA. So the main comparison will be between DE and DESA. We can
safely state that DE and DESA both found the global minimum for damp1, lfbuff, and delay
case, since we know that zero is the minimal possible CF value in our experiments. For
the remaining cases however we can make no such claims. Sometimes the design goals can
be too ambitious and cannot be achieved with the given topology or parameter bounds. In
such cases we have no knowledge of the minimal CF value nor of the location of the global
minimum. This is in fact a major problem in most practical applications. Despite this we
can still conclude a few things about DE and DESA. One can see that DESA exhibits fast
initial progress. For the first five cases DESA approached solutions with low CF values
considerably faster than DE. In the later stages the fine tunning abilities of DE began to
stand out. For all cases 100 population members of DE contained enough information to
fine tune the solution better and faster than the simple acceleration mechanism of DESA.
For more complex cases however (damp1-5c and lfbuff-5c) DE was able to find a slightly
better solution then DESA but it also required more CFE. Random sampling allows DESA
to work with a small population and still maintain adequate diversity of solutions to success-
fully find global minimum of difficult problems. But it also affects the convergence speed
and fine tunning abilities of the method. This problem however is much easier to solve than
improving the methods global search capabilities. DESA appears to have good global search
capabilities but the replacement of the current acceleration procedure with a more sophisti-
cated local search could greatly improve the convergence speed and make the method even
more competitive.

123



72 J Glob Optim (2009) 44:53–77

Table 2 IC optimization results

Case DESA Multistart DE SA

COMPLEX

damp1 CFE for CF < 1 5,843 5,208 (2) 11,185 –

CFE for CF < 0.1 7,818 – 11,185 –

VARS = 27 Final CF 0 0.087 0 1.697

GOALS = 15 CFE for minimal CF 63,863 68,471 (15) 38,922 30,028

CORNERS = 1 Final CFE 63,863 100,000 (24) 38,922 100,000

damp1-5c CFE for CF < 10 2,490 1,356 (1) 3,549 –

CFE for CF < 5 3,598 21,281 (5) 8,980 –

VARS = 27 Final CF 1.806 3.425 1.741 14.448

GOALS = 15 CFE for minimal CF 250,021 231,312 (55) 294,646 30,304

CORNERS = 5 Final CFE 300,000 300,000 (73) 300,000 300,000

lfbuffer CFE for CF < 10 1,781 414 (1) 4,797 –

CFE for CF < 1 9,523 1,339 (1) 25,652 –

VARS = 36 Final CF 0 0.512 0 12.909

GOALS = 13 CFE for minimal CF 79,377 3,310 (1) 43,284 51,597

CORNERS = 1 Final CFE 79,377 100,000 (24) 43,284 100,000

lfbuffer-5c CFE for CF < 10 1,941 989 (1) 5,584 –

CFE for CF < 5 5,852 13,523 (4) 18,877 –

VARS = 36 Final CF 2.330 4.313 1.950 18.294

GOALS = 13 CFE for minimal CF 229,658 157,612 (41) 289,889 16,155

CORNERS = 5 Final CFE 300,000 300,000 (78) 300,000 300,000

nand CFE for CF < 500 282 40 (1) 485 2,037

CFE for CF < 200 507 94 (1) 1,023 4,798

VARS = 3 Final CF 166.641 166.686 166.640 166.693

GOALS = 9 CFE for minimal CF 2,208 5,818 (47) 9,564 7,543

CORNERS = 3 Final CFE 2,986 10,000 (81) 10,000 10,000

delay CFE for CF < 20 · 103 38,698 660 (1) 8,063 –

CFE for CF < 10 · 103 84,302 21,101 (28) 20,832 –

VARS = 12 Final CF 0 6,183.500 0 59,217.8

GOALS = 6 CFE for minimal CF 183,687 114,794 (143) 33,141 9,562

CORNERS = 1 Final CFE 183,687 200,000 (250) 33,141 200,000

damp2 CFE for CF < 20 989 420 (1) 1,261 –

CFE for CF < 10 11,282 3,926 (3) 10,095 –

VARS = 15 Final CF 5.926 7.487 5.926 21.394

GOALS = 13 CFE for minimal CF 251,244 326,011 (231) 98,190 7,282

CORNERS = 14 Final CFE 365,343 500,000 (352) 500,000 500,000

To demonstrate the difficulties of IC optimization we also calculated the profile of the
CF for the damp1 case. We performed a sweep through all optimization parameters starting
from some initial solution and from the final solution found by DESA. Since there are 27
optimization variables the resulting profile is difficult to plot. Therefore Fig. 2 shows the
CF profile for a subset of the optimization parameters. The curves intersect at a point with
x-axis value zero representing the final parameter values. Eventhough the figure does not
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Table 3 Results for the damp1 case

Measurement Goal DESA Multistart DE SA

COMPLEX

Circuit area <10−8 m2 8 · 10−9 m2 5.95 · 10−9 m2 8.01 · 10−9 m2 7.64 · 10−9 m2

Current
consumption <1 mA 437 · 10−6 A 530 · 10−6 A 420 · 10−6 A 607 · 10−6 A

AC gain >70 dB 70.4 dB 70 dB 71.2 dB 92.5 dB

Unity gain
bandwidth >5 MHz 17.2 MHz 15.7 MHz 9.25 MHz 20.1 MHz

Bandwidth >500 Hz 1.38 kHz 2.23 kHz 1.37 kHz 0.169 kHz

Phase margin >60◦ 65.9◦ 90.3◦ 96.6◦ 56.4◦
Gain margin >10◦ 33.4◦ 15.6◦ 51.7◦ 13.2◦
Max.derivative

of gain
magnitude <0 −104 · 10−9 −39.9 · 10−9 −105 · 10−9 6.95 · 10−6

Output voltage

swing >1.6 V 1.6 V 1.57 V 1.6 V 1.37 V

DC gain >60 dB 69.3 dB 66.7 dB 69.9 dB 86.9 dB

Settling time <300 ns 174 ns 168 ns 168 ns 75.6 ns

Overshoot <1% 696 · 10−3% 885 · 10−3% 45.5 · 10−3% 3.94 · 10−3%

Slew rate >5 · 106 V/s 7.44 · 106 V/s 7.48 · 106 V/s 6.68 · 106 V/s 14.7 · 106 V/s

Rise time <200 ns 64.4 ns 64.1 ns 71.8 ns 32.8 ns

Fall time <200 ns 57.5 ns 81.1 ns 187 ns 53.1 ns

show the profile for all 27 variables, it clearly shows why IC optimization is so difficult.
The CF is highly nonlinear and contains several local minima. The sensitivity of the CF to
different parameters varies considerably. Noise is also clearly visible. All these facts make
fast gradient descent methods inefficient and the entire optimization task extremely difficult.
When there are several corner points to consider, the task becomes even more challenging.
The quality of the final solution (point with x-axis value zero) can also be confirmed from
the profile of the CF, since the CF value increases or remains zero when the parameters are
varied.

We should mention that a very large number of CFE was allowed in our experiments. This
was done for comparison purposes only. In practice the optimization time is always limited
so there would be a very strict limit on the maximal number of CFE. In our experiment we
have seen that DESA exhibits faster initial progress but DE can fine tune the solution faster
and better. This means that DESA could be further improved by using a fast local search
method in the second stage of the optimization run.

7 Conclusions

Design of integrated circuits is a very challenging task. Once the appropriate circuit topology
has been selected, the parameter values for every electronic component must be determined
in order to obtain a circuit that meets the design specification. The task can be formulated as
an optimization problem and solved with the help of computer software. A very large number
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Fig. 2 Cost profile of case damp1—(a) at the initial point and (b) at the final solution found by DESA. Every
curve represents a sweep of one of the optimization parameters

of different optimization methods have been developed in the past. Unfortunately many of
them are not suitable for IC optimization due to a very complex structure of the CF. Due to
numerical noise and several local optima the fastest gradient methods are not the best choice.
Global direct search methods must be used that can handle noisy functions and are capable
of locating the global minimum with high probability.

DE and SA are two very popular optimization methods. SA has good global search capa-
bilities and can easily escape from low quality local minima, but it has very slow convergence.
DE on the other hand has fast convergence but no means of escaping from local minima once
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the population members get too close to each other. Large populations are the only chance
for DE to find the global minimum. DESA is a combination of SA and DE and is expected
to be able to escape from local minima due to random sampling and the metropolis criterion.
DE operator on the other hand allows the use of knowledge from the entire population for
trial point generation which in turn speeds up the convergence. Since basic DE does not use
random sampling and uses a greedy selection strategy it is expected to run faster than DESA,
but SA features allow DESA to guarantee global convergence under mild assumptions and
still run much faster than SA.

We tested the performance of DESA, DE, SA and multistart COMPLEX method on 23
mathematical test functions, with strict limits on the maximal number of CFE. Simple SA
produced the worst results for all functions. Pure random sampling is too inefficient and the
selection of the appropriate method parameters depends greatly on the given problem. The
multistart COMPLEX method performed fairly well on several unimodal and low dimen-
sional functions but for high dimensional cases with many local minima the lack of global
search capabilities becomes apparent. It produced the best result for only one of these difficult
problems. DE exhibited efficient performance on unimodal and low dimensional functions. It
produced the best results for most of these cases. However when optimizing high dimensional
functions with many local minima it became clear that DE depends on a large population
to maintain diversity of the solutions. Such a large population requires much more time to
converge to a single solution, especially when local minima are spread across the entire
search area. Except for only a few of these functions DE performed better than the multistart
COMPLEX method. The proposed hybrid method (DESA) produced fairly good results for
unimodal and low dimensional functions. For some of the functions the random steps reduced
its fine-tunning abilities, and its strict termination conditions caused premature termination
in a few runs for some functions. On high dimensional functions with many local minima
good global search capabilities of DESA became apparent. On three out of six such difficult
functions DESA produced much better results that DE and the multistart COMPLEX. For
the other three DESA was unable to fine tune the solutions to the same extent as DE and
ended up in the close proximity of the global minimum.

We also tested the methods on seven real-world cases of analog IC design. The results again
confirmed that basic SA is too inefficient and that without parameter tunning it is very diffi-
cult to predict its performance for a specific problem. Our experiments have shown that the
multistart COMPLEX method achieves fast progress towards the local minima but it requires
too many restarts before the method finds local minima with low CF values. DE proved to be
a very good method for IC optimization. While its initial progress was rather slow it exhibited
very good fine tunning capabilities. DESA also performed well for IC optimization. While
random steps allow DESA to work with a small population they also affect its local search
capabilities and convergence speed. Incorporation of a more sophisticated local search strat-
egy could greatly improve the performance of DESA and is a good direction for future work.

We should mention that in our experiments we ignored some very important aspects of
analog IC design, such as mismatch and yield estimation, layout issues, etc. They are not the
main purpose of this paper but can be incorporated in the existing framework. Our goal is to
find methods that are capable of finding the minimum of complex CFs. The main purpose
of this paper was to introduce a new hybrid global optimization method. The experiments
shoved that while global convergence was established for DESA, it comes at a price of
reduced convergence speed and weaker local search capabilities. These drawbacks however
can be addressed by implementing a local search procedure that is more sophisticated and
efficient than the one currently used.
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